

The impact of Pressurized CO₂ and N₂ Gases on the Various Developmental Stages of *Ephestia cautella* and *Oryzaephilus surinamensis* Store Insects

M.Y. Amin^{1*}, E.L. Ayad¹ and M.M.I. Aamir²

(1) Stored Grain Insects Department, Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12619, Egypt; (2) Plant Protection Department, Faculty of Agriculture, Zagazig University, Egypt.

*Email address of the corresponding author: drmanar01@gmail.com

Abstract

Amin, M.Y., E.L. Ayad and M.M.I. Aamir. 2025. The impact of Pressurized CO₂ and N₂ Gases on the Various Developmental Stages of *Ephestia cautella* and *Oryzaephilus surinamensis* Store Insects. Arab Journal of Plant Protection, 43(4):480-487. <https://doi.org/10.22268/AJPP-001351>

The purpose of this study was to assess the impact of pressurized CO₂ and N₂ on the various stages of two well-known insect species found in storage, namely, *Ephestia cautella* (Walker) and *Oryzaephilus surinamensis* (L.). The insects were subjected to three different levels of pressurized gas (2, 4 and 6 Kg/cm²) in a metal gas cylinder over a period of two days at room temperature of around 30°C. The results obtained suggested that CO₂ was significantly more effective than N₂ gas. The egg stage of both insect species exhibited the greatest tolerance, whereas the adult stage displayed the highest sensitivity to both gases, regardless of pressure level. It was observed that insect mortality increased as the pressure level of gas increased, with the highest mortality rates recorded at the highest gas pressure (6 kg/cm²). Additionally, certain biochemical parameters were analyzed in adults of *O. surinamensis* that were exposed to 6 kg/cm² of CO₂ pressure for 2 days.

Keywords: *Ephestia cautella*, *Oryzaephilus surinamensis*, pressurized gases, CO₂, N₂, biochemical parameters.

Introduction

Conventional control methods, such as the use of methyl bromide and phosphine gases, have been widely utilized to effectively and affordably control stored products pests. However, excessive use of these chemicals has raised environmental concerns. Methyl bromide, in particular, has been recognized as a chemical that depletes ozone, leading to its phasing out of production and use by 2015 (UNEP, 1995). In recent decades, extensive research has been conducted to explore the efficacy of modified atmosphere with different gases to control various stored pests. Depending on the concentrations of gas and temperature, treatments utilizing modified atmospheres at atmospheric pressure may take anywhere from a few days to several weeks to be successful in controlling all the developmental stages of pests depending on gas concentrations and temperature (Banks & Annis, 1990; White *et al.*, 1995). To enhance effectiveness, researchers proposed the use of high pressure rather than atmospheric pressure (Calderon & Barkai-Golan, 1990; Navarro, 2006). The effectiveness of using high-pressure CO₂ for pest control depends on several factors such as the type of pest, the insect's life stage, the pressure level, and the duration of exposure (Khalil *et al.*, 2020; Locatelli *et al.*, 1990; Reza *et al.*, 2021). These methods provide a means to eradicate insects from stored commodities without causing pollution to the environment and are considered safer than traditional fumigants. Additionally, there are no harmful residues left behind after treating the commodity with either nitrogen (N₂) or oxygen (O₂). The use of nitrogen is environmentally friendly, free from residues and can be employed in food storage and processing without requiring registration, according to current regulations (Sakka *et al.*, 2020; Timlick *et al.*, 2002).

Nitrogen application has long been recognized as a promising method for the elimination of pests in stored products (Adler *et al.*, 2000; Athanassiou *et al.*, 2017; Navarro, 2006). This study aimed to determine the effectiveness of pressurized CO₂ and N₂ compared with pressurized air, at 3 different pressure levels (2, 4 and 6 kg/cm²) to control the various life stages of *Ephestia cautella* (Walker) and *Oryzaephilus surinamensis* (L.). Additionally, biochemical analyses were conducted on *O. surinamensis* adults exposed to pressurized CO₂ and air.

Materials and Methods

Rearing technique of *Ephestia cautella*

Adults of *E. cautella* insects were collected and 50 pairs were put into individual plastic containers, 77 mm in diameter and 146 mm high. Each container housed one pair and contained cotton swabs soaked with a solution of 10% sugar, as described earlier (Shoukry *et al.*, 1978). The mouth of the container was wrapped with a plastic mesh (Bell & Bowley, 1980) using a rubber band and inverted on a loosely affixed lid. The following items were observed: Muslin was used to cover each glass cage both from the upper and lower sides, in order to allow the eggs to easily fall into a Petri dish, muslin with a selected diameter was employed to cover the bottom side of the cage, the eggs were gathered on a daily basis and placed in 500 ml glass jars for incubation, for larval feeding, each jar containing 25 mg of eggs was provided with 150 g of artificial diet, the artificial diet was prepared using 500 g of yeast, 250 ml of natural honey, and 250 g of milk powder. Mixed together and placed in a glass jar covered with tulle fabric using a rubber band, and placed in a dark place. The jars were covered with muslin and incubated at the optimal rearing conditions of 27±1°C and 65±5% RH in

complete darkness until cocoon formation (Hashem *et al.*, 2016). Target insects were reared for several generations before using them in the experiments.

Preparing the insect stages for exposure to pressurized gases

Eggs stage- The experiment involved placing batches of 30 of *E. cautella* eggs, each being 0-24 hours old, into small cloth bags that were filled with approximately 25 g of medium and sealed using rubber bands.

Larval stage- The fourth larval developmental stage, 1-2 days old, were obtained from the main breeding population. A delicate brush was utilized to collect them at a rate of 10 larvae per vial, and then provided with 25 g of synthetic food, the vials containing the larvae were covered and subsequently exposed to gas as shown in Figure 1.

Pupal stage- 1-2 days old pupae were obtained from the original culture using a delicate brush, and 10 pupae were placed per vial. To prepare for gas exposure, the cages were covered with a small muslin fabric.

Adult stage- Newly hatched adults, 0-1 day old, were collected from the breeding colonies and placed inside vacant wire mesh cages in preparation for gas exposure.

Rearing technique of *Oryzaephilus surinamensis*

Stock culture- The insect cultures were bred using a diet as described by (Miller *et al.*, 1969). The cultures were made by mixing 930 g of white flour, 930 g of white corn meal, and 140 g of brewer's yeast. The white flour cornmeal was individually sifted through a sieve with 20 mesh per inch to eliminate any insect stages, and then stored at -13°C for at least one week to eliminate any remaining insects and mites. The components of the medium were mixed together and placed in sealed plastic bags. These bags were stored in the deep freezer until needed. One-kg glass jars were used to house the cultures. Approximately 300 grams of the aforementioned medium was added to each jar, filling them up to about one-third full. Corrugated paper strips were placed on the surface of the medium. Each rearing jar had 200 adult insects collected and placed in it. One week after egg-laying, the adult insects were removed and transferred to a fresh rearing jar for another week before being disposed of. The jars were covered with muslin cloth, secured with rubber bands and kept in an incubator at 27±2°C and 65±5% relative humidity. Once the adults of the new generation started to appear, they were collected from the medium using a number 20 sieve and prepared in the same manner as previously mentioned.

Rearing of *O. surinamensis*

Egg stage- For egg laying, white flour was used as a substrate and carefully sifted through a 52-mesh/inch sieve to obtain a finely ground consistency. Any leftover residues were separated. Under a stereo microscope (KOPPACE 3.5X-90X) (KOPPACE Technology "SHENZHEN" CO., LTD.), the eggs laid on the artificial diet were easily visible. Approximately 200 g of sifted white flour was portioned and placed in glass jars weighing 500 g each. Additionally, strips of corrugated paper were placed on the surface of the flour in each jar. Separate prepared jars received around 200 ten-

day-old adult insects. After one day, the adults and their laid eggs were sifted out from the white flour using a no.52 sieve. The eggs were collected, counted and subsequently examined, while the adults were moved to new jars. Each batch of 30 eggs was gently transferred to gauze cages measuring 3×8 cm. These cages contained 25 g of thoroughly mixed rearing medium. These cages were utilized for subsequent experiments.

Larval and pupal stages- Approximately 1000 eggs were divided into two groups. Each group was placed in a 1 kg glass jar with around 500 g of thoroughly mixed rearing medium. The jars were then placed in an incubator set at a temperature of 27±2°C and 65±5% RH. 20 days later, the hatched eggs in both jars were developed into larvae (15 days old). The larvae from one group were used for testing, while the larvae from the other group were kept until the 25th day when they developed into pupae (Finkelman *et al.*, 2003). The pupae, which were between 0-1 day old pupae were used for testing. To conduct the experiment, 10 insects were prepared as replicates for both the larvae and pupae, following the same procedure as described for the eggs.

Adult stage- Recently hatched adult flies, around one week old, were divided into groups of 20 and moved away from the cultured population. They were then placed in designated vials containing an adequate amount of food.

Figure 1. Wire gauze cages used for insect exposure to gases.

Insect exposure to gases

A cylindrical metal chamber with a capacity of 37 liters (Figure 2) was utilized to expose insects to gases. The chamber had a large opening at the top, which was equipped with a metal disc (cover), a rubber gas kit and six bolts. In addition, there were two taps on both sides of the chamber, with one tap connected to the upper part of one side and the other tap connected to the lower part of the opposite side. The vials containing the insects (Figure 3) were placed inside the exposure chamber and the chamber was sealed securely. To conduct the experiment, three replicates of each tested stage of both insects were used. The upper part of the chamber was connected to the source of the tested gas (gas cylinder or air compressor) using a suitable hose and secured tightly. A manometer was installed at the top of the chamber to measure the pressure. Initially, the lower tap was left open

to remove air from inside the chamber and then it was closed while the gas flow continued inside until the desired pressure level was reached. Three pressure levels (2, 4 and 6 kg/cm²) were examined in the experiment. The exposure period for all stages of both insect species was two days. Once the exposure period was completed, the chamber was opened carefully and gradually. After each treatment, eggs, larvae, pupae and adults were transferred individually to 250 ml plastic jars that contained standard diets covered with muslin. These jars were kept at 27±1°C and 65±5% relative humidity until they were examined for mortality. Adult mortality was recorded 4-5 days after exposure. Larval mortality was observed for those larvae that had not metamorphosed into pupae 9 days after exposure, pupal mortality was counted for those pupae that had not emerged as adults after 9 days and egg hatch was recorded 7 days after treatment. The mortality data obtained from the treatments were adjusted using Abbott's formula (Abbott, 1925). Statistical analysis of the data obtained was conducted using the MSTAT statistical analysis package (MSTAT-C, 1991), following the methods described earlier (Gomez & Gomez, 1984). To test the differences between treatment means at a 5% level of probability, the least significant differences (LSD) method was applied, (Steel *et al.*, 1997).

Figure 2. Metal chamber connected with gas cylinder.

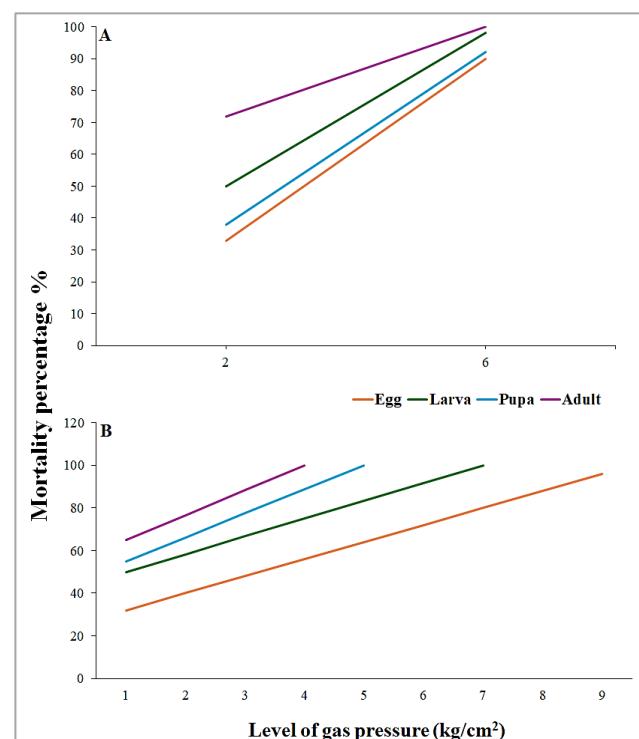
Figure 3. Metal chamber with air compressor.

Biochemical analysis

The biochemical analysis of adults of *O. surinamensis* that were exposed to a pressure of 6 kg/cm² were made. The insects were prepared as described earlier (Amin, 1998). They were homogenized in distilled water (50 mg/1 ml). Homogenates were centrifuged at 8000 rpm for 15 min at 2°C in a refrigerated centrifuge. The pellets were discarded and the supernatant was to as the enzyme extract, and were kept in a deep freezer at -20°C until use. Double beam ultraviolet/visible spectrophotometer (spectronic 1201, Milton Roy Co., USA) was used to measure absorbance of metabolic compounds. Carboxylesterase activity was measured according to the method described by (Simpson *et al.*, 1964), using methyl n-butyrate (MeB) as substrate. Acid and alkaline phosphatases were determined according to the method described by (Powell & Smith, 1954). Alpha esterases (α - esterases) were determined according to (van Asperen, 1962) using α -naphthyl acetate as substrates. Phenoloxidase activity was determined according to a modification of (Ishaaya, 1971). Total proteins were determined using the method of (Bradford, 1976). Total carbohydrates were estimated in acid extract of a sample by the phenol-sulphuric acid reaction of (Dubios *et al.*, 1956). Total carbohydrates were extracted and prepared for assay according to (Crompton & Birt, 1967).

Statistical analysis

Each experiment included 3-4 duplicates of insect homo-gen, and the outcomes of biochemical tests were obtained from three separate evaluations. The gathered data were examined through one-way analysis of variance (ANOVA) using statistical software (cohort software Berkeley). If the ANOVA statistics were deemed significant ($P < 0.01$), the means were compared using Duncan's multiple range test.


Results and Discussion

The mortality rates of eggs, larvae, pupae, and adult from both insect (*E. cautella* and *O. surinamensis*) species were tested by exposing them to three different levels of pressurized air, CO₂, and N₂ for two days at room temperature (averaged at 30°C). The results obtained Table 1 indicated that as the pressure level increased, the mortality of *E. cautella* was clearly increased. Among the four stages of the insect, the adult stage exhibited the highest mortality rate compared to the other stages. Both the egg and pupal stages of *E. cautella* showed considerable tolerance to all pressurized gases, with no significant difference between them. When compared to the other stages, the larval stage of *E. cautella* displayed moderate sensitivity to CO₂ and N₂. The average mortality rates of the insect stages, regardless of the gas type and pressure level, were 39.50, 48.85, 42.93, and 59.59% for eggs, larvae, pupae, and adults, respectively. Results also indicate that N₂ was less effective against all stages of *E. cautella* as compared to CO₂. The overall mortality means caused by both gases and the control were 71.25, 66.01, and 5.90% for CO₂, N₂, and the control, respectively. Additionally, the results obtained revealed that the increase in pressure level significantly impacted the mortality rate of all stages of the tested insect. The mortality rates of the insect stages progressively and significantly

increased with higher pressure levels, reaching 40.88, 46.75, and 63.04% for pressure levels of 2, 4, and 6 kg/cm^2 , respectively. The L_{p50} of pressurized CO_2 for the adult stage of *E. cautella* was the lowest at 1.4 Kg/cm^2 compared to other insect stages (Figure 4-A). In contrast, the L_{p50} for eggs was the highest at 2.7 kg/cm^2 . Additionally, the L_{p50} values of pressurized N_2 for the different stages of *E. cautella* (Figure 4-B) corresponded with the results presented in Table 1, indicating that the egg stage was the most tolerant to pressurized N_2 at 3.1 kg/cm^2 . Conversely, the adult stage was the most sensitive to pressurized N_2 , with an L_{p50} of only 1.5 kg/cm^2 .

O. surinamensis generally showed less sensitivity to the tested pressurized gases to *E. cautella*. The mortality rate of *O. surinamensis* were lower, with 69.9% for CO_2 and 60.25% for N_2 Table 1. The sensitivity of eggs and larvae of *O. surinamensis* to the tested gases was relatively similar to that of *E. cautella*. However, the pupal and adult stages of *O. surinamensis* were less sensitive to the tested gases compared to *E. cautella* Tables 1 and 2. It was observed that the mortality rate of all stages of the insect followed the same trend as mentioned above for *E. cautella*. As the pressure increased, the mortality rate increased, reaching the highest value for the highest pressure level. In most cases, the adult stages had the highest mortality rate for both gases at any pressure level (Table 1). According to the L_{p50} values of pressurized gases applied to different stages of *O. surinamensis* (Figure 5). It was evident that the egg stage exhibited the highest tolerance with the highest L_{p50} value of 3.0 kg/cm^2 for CO_2 compared to other stages. The egg stage also showed a relatively high tolerance level of 3.0 kg/cm^2 to pressurized N_2 , and higher than that of the larval (2.1 kg/cm^2)

and pupal (2.1 kg/cm^2) stages. In contrast, the adult stage exhibited the lowest tolerance to pressurized N_2 (2.0 kg/cm^2), and the L_{p50} value did not fall on the regression line.

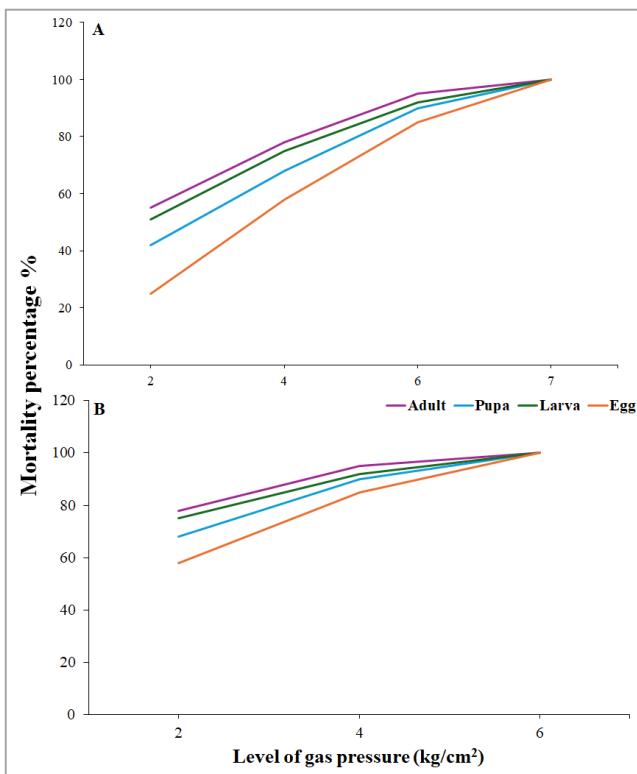

Figure 4. Toxicity lines for pressurized CO_2 (A) and N_2 (B) level-mortality Regression lines tested against the different stages of *E. cautella* for two days under room temperature.

Table 1. The average mortality percentages of *Ephestia cautella* (EC) and *Oryzaephilus surinamensis* (OS) under three different gas conditions over a period of two days.

Insect stages	Gases	Level of gas pressure (kg/cm^2)						Mortality rate means		General mortality means of stages	
		2		4		6		EC	OS	EC	OS
Eggs	Control	1.11	1.11	2.20	2.20	3.30	3.30	2.20	2.20	39.50	38.13
	CO_2	39.99	29.99	53.44	52.22	93.33	93.33	62.25	58.51		
	N_2	36.66	34.44	52.22	49.99	73.33	76.66	54.07	53.69		
Larvae	Control	6.60	3.30	10.00	10.00	13.33	13.33	9.90	8.87	48.85	46.69
	CO_2	50.00	46.66	66.66	80.00	96.66	90.00	71.10	72.22		
	N_2	46.66	43.33	63.33	57.00	86.66	76.66	65.55	58.99		
Pupae	Control	3.30	3.30	6.60	6.60	10.00	10.00	6.60	6.63	42.93	30.72
	CO_2	40.00	40.00	56.66	70.00	93.33	93.33	63.33	67.77		
	N_2	43.33	36.66	53.33	50.00	80.00	73.33	58.88	17.77		
Adult	Control	3.30	1.60	5.00	3.30	6.60	5.00	4.90	3.32	59.59	53.14
	CO_2	68.33	60.00	96.66	83.33	100.00	100.00	88.33	81.11		
	N_2	61.66	51.66	95.00	80.00	100.00	93.33	85.55	74.99		
General mortality means of gas pressure		40.88	29.33	46.75	45.38	63.04	60.68				

LSD_{0.05} for *Ephestia cautella* (EC) insect stages = 4.14%, for pressure = 3.58%, for stages × gases = 6%, for stages pressure = 6%, for gases × pressure = 5.18%, and for stages × gases × pressure = 6%.

LSD_{0.05} for *Oryzaephilus surinamensis* (OS) insect stages = 4.38%, for pressure = 3.79%, for gases = 3.79%, for insect stages × gases = 6.33%, for insect stages × pressure = 6.33%, for gases × pressure = 5.48%, and for stages × gases × pressure = 6%.

Figure 5. Toxicity lines for pressurized CO₂ (A) and N₂ (B) level-mortality Regression lines tested against the different stages of *O. surinamensis* for two days under room temperature.

Pressurized CO₂ produces an extraordinary impact by combining three effects: dissolving carbon dioxide in insects' body fluids, causing excessive acidity in both cell fluid and hemoglobin. Another effect is the deprivation of oxygen, and a crucial factor is the pressure effect. The combination of CO₂ and pressure can effectively yield results within a brief exposure time. For example, in the case of the dried fruit moth, the duration of treatment time was observed to increase significantly (Dumas *et al.*, 1969). Numerous studies have demonstrated that vacuum fumigation combined with CO₂ can enhance the toxicity of fumigants, particularly substances like MB and phosphine (Calderon & Leesch, 1983; Donahaye & Navarro, 1989; Dumas *et al.*, 1969; Monro *et al.*, 1966; Williams, 1985). The different effects of CO₂ and N₂ treatment on insects can be explained by the varying solubility of these gases in insect haemolymph. Additionally, CO₂ is known to impede

respiration, possibly due to reduced oxygen levels and increased CO₂ levels. The lethal impact of CO₂ is attributed to its high solubility in insect body fluids under high pressure, leading to a decrease in pH. It has also been observed that the rapid uptake of CO₂ under high pressure causes expansion, and causes evaporation when the pressure is lowered, resulting in damage to the insect cell membrane (Oliver & Herbert, 2018). Treated insects experienced severe damage to their integument due to the internal expansion of dissolved CO₂ when the gas pressure quickly returned to atmospheric pressure. According to a previous study (Riudavets *et al.*, 2010), the exposure time needed to achieve 100% control was significantly shorter at higher CO₂ pressure, compared to atmospheric pressure, as the effectiveness of CO₂ depends on how quickly it dissolves under pressure of CO₂ in the atmosphere.

Biochemical studies

Results presented in Table 2 show the effect of exposure to 6 kg/cm² of CO₂ gas for 2 days on the biochemical parameters of *O. surinamensis* adults. The results indicated that the level of alkaline phosphatase and carboxyl esterases were significantly higher in the treated insects compared to the control group. There was a slight influence on total carbohydrates and peroxidase, but no significant differences were observed. The treated insects had lower levels of alpha esterases and phenol oxidase compared to the control group, with significant differences between them. Total proteins were also lower in the treated insects, with a significant difference from the control group Table 3. Findings are consistent with previous studies (Crompton & Birt, 1967; Ghoneim *et al.*, 2014; Qari *et al.*, 2017; Mohamed *et al.*, 2018). Additionally, proteins may act as antioxidants and protect against damage caused by aerobic metabolism and dietary pro-oxidants, which can harm proteins, lipids, and other crucial metabolites. The exact way in which carbon dioxide becomes toxic under high pressure is not yet completely understood, however, it could be related to an increase in respiration and its dissolution in the fluids of the intestines (Stahl *et al.*, 1985), as well as causing damage to cell membranes during sudden decompression. (Wei *et al.*, 1998) provided two main reasons behind the killing effect of pressurized CO₂ on insects. Firstly, it causes significant damage to the insects' body walls, resulting in their death in large numbers. Secondly, the combination of high pressure and amount of CO₂ enables a swift penetration, leading to toxic effects and rapid death.

Table 2. Changes in some biochemical content in *O. surinamensis* adults treated for 2 days under 6 kg/cm² of pressurized CO₂.

Parameters	Biochemicals content						
	Alkaline phosphatase (mg/g)	Alpha esterases (mg/g)	Carboxyl esterases (mg/g)	Total proteins (mg/g)	Total carbohydrates (mg/g)	Phenol oxidase (Δ O.D.units /min/g)	Peroxidase (Δ O.D.units /min/g)
Control	258.33	1286.00	45.17	34.73	47.80	12.73	15.97
Treated	486.33	1004.33	69.40	31.43	45.77	7.67	16.17
LSD _{0.01}	57.76	126.97	6.34	1.58	-	1.38	-

الملخص

أمين، منار يوسف، إيمان لطفي عياد و محمد محمد إبراهيم عامر. 2025. تأثير غازي ثانى أكسيد الكربون والنيتروجين المضغوطين على الأطوار المختلفة لحشرة فراشة المخازن الاستوائية (دودة البلح العameri) وخنفساء السورينام. مجلة وقاية النبات العربية، 43(4):487-480.

<https://doi.org/10.22268/AJPP-001351>

هدفت هذه الدراسة إلى تأثير تأثير غازي ثانى أكسيد الكربون والنيتروجين المضغوطين على الأطوار المختلفة لنوعين معروفين من حشرات المواد المخزنة، وهما: فراشة المخازن الاستوائية (دودة البلح العameri) (*Ephestia cautella*) وخنفساء السورينام (*Oryzaephilus surinamensis*). تم تعریض الأطوار المختلفة لنوعي الحشرات المدروسة للغازين المضغوطين عند ثلاثة مستويات من الضغط (2، 4 و 6 كغ/سم²) وذلك في أسطوانة معدنية لمدة يومين متتالين عند حرارة الغرفة (متوسط 30°C). أوضحت النتائج أن غاز ثانى أكسيد الكربون المضغوط كان أكثر فعالية من غاز النيتروجين. كان طور البيضة لنوعي الحشرات كلتيهما أكثر تحملًا من باقي الأطوار، بينما كان طور الحشرة الكاملة لكلا الغازين، بصرف النظر عن مستوى الضغط. لوحظ أيضًا أنه كلما ازداد مستوى الضغط كلما زادت نسبة القتل لكلا النوعين الحشريين. بالإضافة إلى ما سبق، تمت دراسة بعض التأثيرات البيوكيميائية لغاز ثانى أكسيد الكربون المضغوط عند أعلى مستوى من الضغط (6 كغ/سم²) على الحشرات الكاملة لخنفساء السورينام.

كلمات مفتاحية: فراشة المخازن الاستوائية، خنفساء السورينام، غازات مضغوطة، ثانى أكسيد الكربون، النيتروجين، تحليلات بيوكيميائية.

عناوين الباحثين: منار يوسف أمين^{1*}، إيمان لطفي عياد¹ و محمد محمد إبراهيم عامر². (1) قسم آفات المواد والحبوب المخزنة، معهد بحوث وقاية النبات، مركز البحوث الزراعية، الدقى، جيزه، مصر؛ (2) قسم وقاية النبات، كلية الزراعة، جامعة الزقازيق، مصر. *البريد الإلكتروني للباحث المراسل: drmanar01@gmail.com

References

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. *Journal of Entomology*, 18(2):65-267. <https://doi.org/10.1093/jee/18.2.265a>

Adler, C., H.G., Corinth and C., Reichmuth. 2000. Modified atmospheres. In *Alternatives to Pesticides in Stored-Product IPM*; Boston, MA, USA. 105–146 pp.

Amin, T.R. 1998. Biochemical and physiological studies of some insect growth regulators on the *Spodoptera littoralis* (Boisd.) Ph.D. Thesis, Faculty of Science, Cairo University, Egypt.

Athanassiou, C.G., A. Chiou, C.I. Rumbos, V. Sotiroudas, M. Sakka, E.K. Nikolidaki, E.A. Panagopoulou, A. Kouvelas, E. Katechaki and V.T. Karathanos. 2017. Effect of nitrogen in combination with elevated temperatures on insects, microbes and organoleptic characteristics of stored currants. *Journal of Pest Science*, 90(2):557-567. <https://doi.org/10.1007/s10340-016-0806-z>

Banks. H.J. and P.C. Annis. 1990. Comparative advantages of high CO₂ and low O₂ types of controlled atmospheres for against storage insects. Pp. 93-122. In: *Food Preservation by Modified Atmospheres*. M. Calderon and R. Barkai-Golan (eds.), CRC Press. Inc., Boca Aaton, Florida, USA.

Bell, C.H. and R. Bowley. 1980. Effect of photoperiod and temperature on diapause in a Florida strain of the tropical warehouse moth, *Ephestia cautella* (Walker). *Journal of Insect Physiology*, 26:533-539. [https://doi.org/10.1016/0022-1910\(80\)90128-6](https://doi.org/10.1016/0022-1910(80)90128-6)

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. *Analytical Biochemistry*, 72(1-2):248-254. [https://doi.org/10.1016/0003-2697\(76\)90527-3](https://doi.org/10.1016/0003-2697(76)90527-3)

Calderon, M. and J.G. Leesch. 1983. Effect of reduced pressure and CO₂ on the toxicity of methyl bromide to two species of stored product insects. *Journal of Economic Entomology*, 76(5):1125-1128. <https://doi.org/10.1093/jee/76.5.1125>

Calderon, M. and R. Barkai-Golan. 1990. *Food Preservation by Modified Atmospheres*. 1st Edition. CRC Press, Boca Raton, USA. 416 pp.

Crompton, M. and L.M. Birt. 1967. Changes in the amounts of carbohydrates, phosphagen, and related compounds during the metamorphosis of the blowfly, *Lucilia cuprina*. *Journal Insect physiology*, 13:1575-1595. [https://doi.org/10.1016/0022-1910\(67\)90180-1](https://doi.org/10.1016/0022-1910(67)90180-1)

Donahaye, E. and S. Navarro. 1989. Sensitivity of two dried fruit pests to methyl bromide alone, and in combination with carbon dioxide or under reduced pressure. *Tropical Science*, 29:9-14.

Dubios, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. *Analytical Chemistry*, 28(3):350-356. <https://doi.org/10.1021/ac60111a017>

Dumas, T., C.T. Buckland and H.A.U. Monro. 1969. The respiration of insects at reduced pressures. II. The uptake of oxygen by *Tenebroides mauritanicus*. *Entomologia et Applicata* 12(4):389-402. <https://doi.org/10.1111/j.1570-7458.1969.tb02535.x>

Finkelman, S., S. Navarro, M. Rindner, R. Dias and A. Azrieli. 2003. Effect of low pressures on the survival of cocoa pests at 18°C. *Journal of Stored Product Research*, 39(4):423-431. [https://doi.org/10.1016/S0022-474X\(02\)00037-1](https://doi.org/10.1016/S0022-474X(02)00037-1)

Ghoneim, K., A.A. Mohammad, A.G. Al-Daly, M.S. Amer, F. Khadrawy and M.A. Mahmoud. 2014. Metabolic responsiveness of desert locust *Schistocer*

cagregaria (Forskal) (Orthoptera: Acrididae) to the khella plant *Ammivisnaga* L. (Apiaceae) extracts. International Journal of Advanced Life Sciences, 7(2):22-77.

Gomez, N.K. and A.A. Gomez. 1984. Statistical Procedures for Agricultural Research 2nd Ed. John Wiley and Sons, New York, USA. 68 pp.

Hashem, M.Y., A.A.I. Ahmed, S.A. Ahmed, S.S.H. Khalil and Y.A. Mahmoud. 2016. Comparative susceptibility of *Corcyra cephalonica* (Lepidoptera: Pyralidae) eggs to carbon dioxide and nitrogen at different temperatures. Journal of Stored Product Research. 69:99-105. <https://doi.org/10.1016/j.jspr.2016.06.007>

Ishaaya, I. 1971. Observations on the phenoloxidase system in the armored scales *Aonidiella aurantii* and *hrysomphalus aonidum*. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 39(4):935-943. [https://doi.org/10.1016/0305-0491\(71\)90117-9](https://doi.org/10.1016/0305-0491(71)90117-9)

Khalil, S.S.H., S.S. Ahmed, S.F. Abdel-Rahman, E.A.A. Khalifa. 2020. Comparative effects of carbon dioxide concentration in modified temperature and pressure conditions on adults and larvae of the red flour beetle, *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae). The Coleopterists Bulletin, 74(1):127-135. <https://doi.org/10.1649/0010-065X-74.1.127>

Locatelli, D.P., L. Suss and M. Frati. 1999. The use of high pressure carbon-dioxide (20 bar) to control some insects of foodstuffs. Pp. 671-675. In: Proceedings of the 7th International Working Conference on Stored-Product Protection. Sichuan Publishing House of Science and Technology, 14-19 October 1998, Beijing, PR China.

Miller, A., R. Philips and H.P.D. Cline. 1969. Rearing Manual for Stored Product Insects. Research and Development Laboratory, Savannah, Georgia.

Mohamed Y.H., A.A. Ahmed, S.S. Ahmed, Y.A. Mahmoud and S.S. Khalil. 2018. Impact of modified atmospheres on respiration of last instar larvae of the rice moth, *Corcyra cephalonica* (Lepidoptera: Pyralidae) Archives of Phytopathology and Plant Protection, 51(19-20):1090-1105. <https://doi.org/10.1080/03235408.2018.1560022>

Monro, H.A.U., T. Dumas and C.T. Buckland. 1966. The influence of vapour pressure of different fumigants on the mortality of two stored-product insects in vacuum fumigation. Journal of Stored Products Research, 1(3):207-222. [https://doi.org/10.1016/0022-474X\(66\)90001-4](https://doi.org/10.1016/0022-474X(66)90001-4)

MSTAT-C. 1991. A Microcomputer program for the design, management and analysis of agronomic research experiment. MSTAT Development Team, Michigan State University., East Lansing, USA.

Navarro, S. 2006. Modified Atmospheres for the Control of Stored-Product Insects and Mites. Pp. 105-146. In: Insect Management for Food Storage and Processing, 2nd edition. J. W. Heaps (ed). AACC International, St. Paul, MN, USA. <https://doi.org/10.1016/B978-1-891127-46-5.50016-7>

Oliver, K. and S. Herbert. 2018. Pressurized Pest Disinfection with CARBO Carbon Dioxide. 12th International Working Conference on Stored Product Protection, 7-11 October 2018. Berlin, Germany.

Powell, M.E.A. and M.J.H. Smith. 1954. The determination of serum acid and alkaline phosphatase activity with 4- aminoantipyrine. Journal of Clinical Pathology, 7(3):245-248. <https://doi.org/10.1136/jcp.7.3.245>

Qari, S.H., N.A.H., Abdel-Fattah and A.A. Shehawy. 2017. Assessment of DNA damage and biochemical responses in *Rhyzopertha dominica* exposed to some plant volatile oils. Journal of Pharmacology and Toxicology, 12(2):87-96. <https://doi.org/10.3923/jpt.2017.87.96>

Reza, S., H. Fereshteh, E. Asgar, A. Fatemah, J. Arsalan and P. Franco. 2021. High- pressure carbon dioxide use to control dried Apricot pests, *Tribolium castaneum* and *Rhyzopertha dominica* and assessing the qualitative traits of dried pieces of treated apricot Foods. 10(6):1190. <https://doi.org/10.3390/foods10061190>

Riudavets, J., C. Castane, O. Alomar, M.J. Ponsand and R. Gabarra. 2010. The use of carbon dioxide at high pressure to control nine stored-product pests. Journal of Stored Production Research, 46(4):228-233. <https://doi.org/10.1016/j.jspr.2010.05.005>

Sakka, M.K., F., Gatzali, V. Karathanos and C.G. Athanassiou. 2020. Efficacy of low oxygen against *Trogoderma granarium* Everts, *Tribolium castaneum* (Herbst) and *Callosobruchus maculatus* (F.) in commercial applications. Journal of Stored Product Research, 97:101968. <https://doi.org/10.1016/j.jspr.2022.101968>

Shoukry, A., Dimetry, N.Z. and A. Aboul-Zahab. 1978. Biology of the almond moth, *Cadra cautella* (Walker) on dehydrated onion in Egypt. Proceedings Fourth Conference Pest Control, September 30 - October 3, 1978, Cairo, Egypt, Science Research Technology and National Research Centre 677 pp.

Simpson, D.R., D.L. Bulland and D.A. Linquist. 1964. Semimicrotechnique for estimation of cholinesterase activity in boll weevils. Annals of the Entomological Society of America, 57(3):367-371. <https://doi.org/10.1093/aesa/57.3.367>

Stahl, E. and G. Rau and H. Adolphi. 1985. Entwesung von Drogen durch Kohlendioxide Druckbehandlung (PEX-Verfahren). Die Pharmazeutische Industrie, 47:528-530.

Steel, R.G.D., J.H. Torrie and D.A. Dickey. 1997. Principles and Procedures of Statistics, A Biometrical Approach. 3rd Edition. McGraw Hill, New York. 672 pp.

Timlick, B., G. Dickie and D. McKinnon. 2002. Nitrogen as a major component of a controlled atmosphere to manage stored product insect pests in large vertical storage in integrated protection of stored products. International Organization for Biological and Integrated Control of Noxious Animals and Plants, 25(3):193-197.

UNEP. 1995. Montreal Protocol on Substance that Deplete the Ozone. Technical Option Committee, Kenya. 304 pp.

van Asperen, K. 1962. A study of house fly esterase by means of sensitive colorimetric method. *Journal of Insect Physiology*, 8(4):401-416. [https://doi.org/10.1016/0022-1910\(62\)90074-4](https://doi.org/10.1016/0022-1910(62)90074-4)

Wei, S., Y. Huiping and W. Haifeng. 1998. The effect of high pressure carbon dioxide, nitrogen and their mixture on the mortality of two species of stored product insects. 706-709. In: *Proceedings of the 7th International Work Conference on Stored Product*, 14-19 October 1998, Beijing, China.

White, N.D., D.S. Jayas and W.E. Muir. 1995. Toxicity of carbon dioxide at biologically producible levels to stored-product beetles. *Environmental Entomology*, 24(3):640-647. <https://doi.org/10.1093/ee/24.3.640>

Williams, P. 1985. Toxicity of methyl bromide in carbon dioxide enriched atmospheres to beetles attacking stored grain. *General and Applied Entomology*, 17:17-24.

Received: December 19, 2023; Accepted: August 8, 2024

تاریخ الاستلام: 2023/12/19؛ تاریخ الموافقة على النشر: 2024/8/8